Viscosupplementation: The Magic of Hyaluronic Acid

Andrew M. Blecher MD

Primary Care Sports Medicine
Osteoarthritis of the knee

- Anatomic and mechanical problem
 - Wearing down of cartilage

- Biochemical problem
 - Changes in chondral and synovial homeostasis
Mechanical

• Chondral breakdown leads to:
 – Malalignment (unicompartmental – varus, valgus)
 – Increased subchondral stress
 • Sclerotic/cystic changes, bony edema
 • PAIN
 – Osteophyte formation
 • Loss of ROM and stiffness
Outerbridge (1961, patellar lesions)

- **Grade 0:** Normal articular cartilage
- **Grade I:** Softening and swelling of cartilage (chondromalacia)
- **Grade II:** Fragmentation/fissuring of surface, diameter less than $\frac{1}{2}$ inch
- **Grade III:** Fragmentation/fissuring to subchondral bone, area greater than $\frac{1}{2}$ inch
- **Grade IV:** Exposed subchondral bone

Insall Modification (1976, commonly used)

- **Grade I:** Softening and swelling of cartilage
- **Grade II:** Fibrillations
- **Grade III:** Deep fissures extending to subchondral bone
- **Grade IV:** Erosive changes with exposure of subchondral bone

Noyes (1989)

- **Grade I:** Chondromalacia
 A) soft
 B) softening with indentation
- **Grade II:** Open lesion
 A) half thickness fissures/fragmentation
 B) full thickness
- **Grade III:** Bone
 A) bone exposed
 B) bone cavity
ARTICULAR CARTILAGE

Outerbridge Classification

GRADE I

GRADE II

GRADE III

GRADE IV
Cartilage degeneration does not necessarily cause pain (articular cartilage has no pain receptors)

Subchondral pain is a late event

Synovial and capsular tissues are the primary sources of pain – not due to mechanical changes

“Knee pain is the malady—not osteoarthritis”

– Hadler

Pain drives osteoarthritis treatment

Biochemical problem

- Chondrocyte and synovial changes in homeostasis

- Most important in understanding current and future treatments of OA
OA Disease Evolution – Stage I

Chondrocyte

Proteases

Matrix Degradation

Inhibitors

Collagen & Proteoglycans

OA Disease Evolution – Stage II

OA Disease Evolution – Stage III

The Role of Inflammation in OA

• Inflammation secondary to cartilage degradation

• Morphological changes in OA synovium
 – Usually mild to moderate
 – At times comparable to rheumatoid arthritis
 – Characterized by increased numbers of:
 • Inflammatory mononuclear cells
 • Activated T-cells and B-cells

Functions of Hyaluronic Acid (HA) in the Normal Joint

- Hyaluronic acid (HA) plays a key role in homeostasis of the normal joint
 - Macro-homeostasis – the rheological environment
 - Mini-homeostasis – the fluid environment
 - Micro-homeostasis – the chemical environment

Macro-homeostasis: HA in Synovial Fluid (SF)

- Highly influences intercellular matrices of joint soft tissues
- Unique combination of elasticity and viscosity
- Hyaluronan responsible for elastoviscous properties
- Elastoviscosity critical for joint function
JOINT FLUID
<table>
<thead>
<tr>
<th></th>
<th>Elasticity (Pa)</th>
<th>Viscosity (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(18- to 27-year-olds; n=16)</td>
<td>117 ± 13</td>
<td>45 ± 8</td>
</tr>
<tr>
<td>Osteoarthritic (n=11)</td>
<td>8 ± 5</td>
<td>5 ± 3</td>
</tr>
</tbody>
</table>

Molecular Weight, Elasticity, and Viscosity

Comparison of Rheologic Factors

<table>
<thead>
<tr>
<th></th>
<th>Molecular Weight (millions daltons)</th>
<th>Shock Absorption (elasticity Pa at 2.5 Hz)</th>
<th>Lubrication (viscosity Pa at 2.5 Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy, Young* Synovial Fluid ²,³</td>
<td>4 - 5</td>
<td>117</td>
<td>45</td>
</tr>
<tr>
<td>* In 18- to 27-year-olds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osteoarthritic Synovial Fluid</td>
<td>0.5 - 4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>³,⁴</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYNVISC® (Hylan G-F 20) ¹</td>
<td>6</td>
<td>111</td>
<td>25</td>
</tr>
<tr>
<td>Hyalgan® (Sodium Hyaluronate)</td>
<td>0.6 - 0.7</td>
<td>0.6</td>
<td>3</td>
</tr>
<tr>
<td>⁵,⁶</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supartz® (Sodium Hyaluronate)</td>
<td>0.6 - 1</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>⁷</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Left: Supartz® (sodium hyaluronate)
MW 0.6-1

Center: SYNVISC® (Hylan G-F 20)
MW 6 million

Right: Hyalgan® (sodium hyaluronate)
MW 0.6-0.7

Supartz is a registered trademark of Seikagaku Corporation.
Hyalgan is a registered trademark of FIDIA S.p.A.
Hylans and hyaluronan

- Cross-linked hyaluronan
- Increased molecular weight (hylan A) or continuous molecular network (hylan B)
- Higher elastoviscosity than purified hyaluronan
- Longer tissue residence time
SYNVISC® (Hylan G-F 20)

- Elastoviscosity similar to that of the synovial fluid of healthy 18- to 27-year-olds
- Designed as a synovial fluid prosthetic device
- A series of three injections can provide pain relief for months
- Generally well tolerated in trials and clinical practice

Molecular weight, viscosity and elasticity are not the only factors.

Left: Supartz® (sodium hyaluronate)
MW 0.6-1

Center: SYNVISC® (Hylan G-F 20)
MW 6 million

Right: Hyalgan® (sodium hyaluronate)
MW 0.6-0.7

Supartz is a registered trademark of Seikagaku Corporation.
Hyalgan is a registered trademark of FIDIA S.p.A.
HA Mini-Homeostasis

• Intrinsic autoregulatory function
 – Regulates lymphatic flow
 – Regulates diffusion of nutrients
 – Regulates diffusion of waste products

HA Micro-Homeostasis

• Effective free-radical scavenger
• Protects chondrocytes and synoviocytes from degradative enzymes, chemical agents, and toxins
• Stabilizes cell membranes
• Desensitizes sensory receptors
• Auto-regulatory maintaining environment for normal HA synthesis

Viscosupplementation

- Replaces pathologic synovial fluid
- Supplements elasticity and viscosity
- Reduces pain, improves mobility and protects cartilage
Indications for Viscosupplementation

Indicated for the treatment of pain in osteoarthritis of the knee in patients who have failed to respond adequately to conservative nonpharmacologic therapy and simple analgesics, e.g., acetaminophen.
SYNVISC® Plus Appropriate Care (AC) vs. AC Alone¹,²

- 3 injections, 1 week apart of SYNVISC® plus AC vs. AC alone
- Prospective
- Randomized
- Multicenter
- Pragmatic

Appropriate Care

Physicians were free to establish appropriate care; they were encouraged, however, to use the 1995 American College of Rheumatology Treatment Guidelines for OA of the knee.¹

“Appropriate care” could include any combination of

- Analgesics
- NSAIDs
- Corticosteroid injections
- Education and counseling
- Weight loss
- Joint rest
- Heat or ice
- Assistive devices
- Physical therapy
- Arthroscopy
- Total joint replacement

SYNVISC® Plus Appropriate Care (AC) Was More Effective Than AC Alone at 6 Months1,2

Viscosupplementation vs. corticosteroid injection (cortisone shot)
Physicians’ Perceptions: Pro-corticosteroids

- Familiarity — long established in the treatment paradigm.\(^1\)
- Used to reduce pain and inflammation, especially in acute knee OA flare-ups\(^1\)
- Relatively fast-acting\(^1\)
- Familiarity with injection procedure
 - Needle placement accuracy is felt to be less critical than for viscosupplementation; being near the target can result in reasonable efficacy
Physicians’ Perceptions: Anti-corticosteroids

- Short duration of efficacy\(^1\)
- Can require frequent injections\(^2,3\)
- Frequent injections (>3 per year) may cause cartilage damage\(^2,3\)
- Local adverse effects
 - Post-injection flares\(^4\)
 - Skin atrophy\(^5\)
 - Osteonecrosis\(^5\)
Viscosupplementation vs. an Intra-articular Corticosteroid

- SYNVISC®: three 2-mL intra-articular injections, 1 week apart
- Triamcinolone hexacetonide: 1 injection as 2 mL of a 20-mg/mL suspension (40 mg)
- U.S.-based
- Multicenter, Prospective
- Physician observer-blinded
- 26 weeks

SYNVISC® (Hylan G-F 20) vs. an Intra-articular Corticosteroid

Mean improvement change in WOMAC™ A1 over time (intent-to-treat population, N=215)

What to expect with viscosupplementation?

• What are the chances I will get better?
• How is it given?
• How many times and how often?
Overall Response to Viscosupplementation

- Much Better: 35.0%
- Better: 42.2%
- Same: 21.4%
- Worse or Much Worse: 1.3%

Severity of OA of the Knee:
Grade 1 (Mild)
Severity of OA of the Knee: Grade 2 (Mild to moderate)
Severity of OA of the Knee: Grade 3 (Moderate to Severe)
Severity of OA of the Knee: Grade 4 (Severe)
Viscosupplementation Across All Radiologic Grades

<table>
<thead>
<tr>
<th>Medial x-ray Grade</th>
<th>Percent Better or Much Better</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>91</td>
</tr>
<tr>
<td>II</td>
<td>80</td>
</tr>
<tr>
<td>III</td>
<td>76</td>
</tr>
<tr>
<td>IV</td>
<td>58</td>
</tr>
</tbody>
</table>

Dosing and Administering SYNVISC® (Hylan G-F 20)

- Prepare knee for injection
- Aspirate joint fluid
- Implant SYNVISC®

Dosing and Administering SYNVISC® (Hylan G-F 20)

• Course of therapy: 3 intra-articular injections over 15 days
 – Day 1: 2 mL
 – Day 8: 2 mL
 – Day 15: 2 mL
Dosing and Administering Hyalgan® and Supartz®

- **Course of therapy:** 5 intra-articular injections over 28 days

<table>
<thead>
<tr>
<th></th>
<th>Hyalgan</th>
<th>Supartz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>2 mL</td>
<td>2.5 ml</td>
</tr>
<tr>
<td>Day 8</td>
<td>2 mL</td>
<td>2.5 ml</td>
</tr>
<tr>
<td>Day 15</td>
<td>2 mL</td>
<td>2.5 ml</td>
</tr>
<tr>
<td>Day 21</td>
<td>2 mL</td>
<td>2.5 ml</td>
</tr>
<tr>
<td>Day 28</td>
<td>2 mL</td>
<td>2.5 ml</td>
</tr>
</tbody>
</table>
Precautions and Contraindications

• Side effects other than local pain/swelling reported rarely

• Contraindicated in patients with known hypersensitivity to hyaluronan products

• Use caution in patients allergic to avian proteins, feathers, or egg products; who have evidence of venous or lymphatic stasis in the leg to be treated; or who have severe inflammation in the knee joint to be treated
When do I use viscosupplementation?

• Stepwise approach to symptomatic OA

 – **First**: NSAIDs, braces/orthotics, glucosamine, PT, analgesics, activity modification, etc.
 • Why? - Knee hygiene

 – **Second**: Injections
 • Visco +/- preceded by steroid injection
 • Visco +/- aspirations
When I use Viscosupplementation beyond simple OA

- Osteoarthritis and meniscal tears
- Chondral defects / Contusions
- Chondromalacia / early OA in the athlete
Arthritis and meniscal tears

• Case study #1:
 – 65 yr old overweight female
 – Pain (predominantly anterior), swelling, stiffness
 – Tenderness over medial and lateral facets
 – Mild tenderness over medial joint line
 – No mechanical symptoms
 – ? Other medical problems
 – Imaging:
 • Patellofemoral OA (grade 3-4)
 • Medial meniscal tear, non-displaced
• Option #1 - Arthroscopy? Debridement/resection
 – Medial tenderness improved, still have anterior knee pain, stiffness and swelling
 – “Thanks for nothing doc”

• Option #2 - Viscosupplementation first
 – Anterior knee pain and stiffness 95% resolved – “Great, thanks doc”
 – Medial knee tenderness and occasional swelling persists on/off
 – Will be back another day if meniscal symptoms develop/worsen
Arthritis and meniscal tears

• Case study #2:
 – 65 yr old overweight female
 – Pain (predominantly medial), swelling, stiffness
 – Tenderness over medial joint line
 – No mechanical symptoms
 – ? Other medical problems
 – Imaging:
 • Medial compartment OA (grade 2-3, small area of grade 4)
 • Medial meniscal grade III degenerative changes
Option #1 – Arthroscopy: 50% partial meniscectomy
- Swelling and stiffness slightly improved
- Medial pain persists, slightly worse
 - “Thanks for nothing doc”
 - Why? Grade 3-4 chondral damage no longer protected by meniscus – increased subchondral stress

Option #2 – viscosupplementation + (lateral heel wedge or unloader brace) first
- Swelling and stiffness slightly improved
- Medial pain 75% improved
- When becomes unlivable – arthroscopy vs. unicompartmental replacement
Chondral defects

Outerbridge (1961, patellar lesions)
- Grade II: Fragmentation/fissuring of surface, diameter less than $\frac{1}{2}$ inch
- Grade III: Fragmentation/fissuring to subchondral bone, area greater than $\frac{1}{2}$ inch
- Grade IV: Exposed subchondral bone

Insall Modification (1976, commonly used)
- Grade II: Fibrillations
- Grade III: Deep fissures extending to subchondral bone
- Grade IV: Erosive changes with exposure of subchondral bone

Noyes (1989)
- Grade II: Open lesion
 - A) half thickness fissures/fragmentation
 - B) full thickness
- Grade III: Bone
 - A) bone exposed
 - B) bone cavity
Articular Cartilage Injury vs. Osteoarthritis

- **Articular cartilage injury**
 - acute, localized
 - acute, generalized
 - chronic, localized
 - chronic, generalized

- **Osteoarthritis**
 - chronic, more generalized
 - radiographic changes
Generalized cartilage injury - arthritis
Localized cartilage injury – chondral defect
Chondral defect

Subchondral bruising

Chondral fissuring
Knee contusion may lead to cartilage surface contact and cartilage injury

» Cartilage injury

• Chondral contusion vs chondral defect

 – Chondral contusion = cartilage bruise
 • Typically resolves with non-operative treatment

 – Chondral defect = cartilage “pot-hole”
 • May not resolve with non-operative treatment
 • Surgical referral?
The larger the lesion the less protective effect on the adjoining cartilage, subchondral bone, and "kissing surface"
Chondral defects

- Cartilage breakdown products
- Synovial inflammation
- Localized loss of mechanical viscoelastic properties
 - potential later generalized loss of viscoelastic properties as synovial fluid composition changes
- Many chondral defects are not amenable to chondroplasty, microfracture, ACI, etc
 - but all are amenable to viscosupplementation
Chondromalacia patella
(cartilage injury)

• **Chondromalacia:**
 - Softening of the articular cartilage
 - A degenerative process
 - A pathologic diagnosis
 - May be idiopathic, but usually secondary to malalignment or instability

 - Sensitive cartilage
Chondromalacia and arthritis

Outerbridge (1961, patellar lesions)
• Grade I: Softening and swelling of cartilage (chondromalacia)

Insall Modification (1976, commonly used)
• Grade I: Softening and swelling of cartilage

Noyes (1989)
• Grade I: Chondromalacia
 A) soft
 B) softening with indentation
Cartilage Biomechanics

Patello-femoral contact patterns:

Femoral – tibial contact:
chondromalacia
Chondromalacia patella

• What do we do with this beyond NSAID’s, PT, braces, activity modification, etc?
• There is no surgery for chondromalacia
 – ? lateral release
• Will this progress to more advanced arthritis?
Viscosupplementation for the athlete (laborer/policeman/fireman/etc.)

• Pain with sport or activity only
• Viscosupplementation eliminates or minimizes symptoms to allow participation in sport/activity
• Does viscosupplementation alter the course of arthritis?
 – Decrease risk by increasing viscoelasticity and minimizing impact?
 – Increase risk by allowing increased participation in impact sports/activities?
• Maybe answers after future studies
• For now, athletes/workers make their own fully informed risk/benefit decisions
Viscosupplementation: Other applications/indications

• Hip, ankle, shoulder OA future indications
 – under fluoroscopy

• Chondromalacia future indication

• Chronic painful shoulder future indication
 – tendinopathies
Viscosupplementation: summary

- Series of injections once per week for 3 or 5 weeks
- Can provide pain relief lasting months to years
- Series can be repeated in six months if pain returns
Thanks!